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The decay of single-particle excitations in nuclear matter is calculated in the low-density-gas approxima
tion (independent-pair approximation) using a separable nucleon-nucleon interaction. For low-energy ex
citations this decay is describable in terms of an optical model during a time interval which is longer than 
5X10~23 sec but shorter than 5X10 -21 sec. In contrast to earlier calculations, the applicability of the optical 
model is verified and the mean energy of an excitation is computed prior to the evaluation of the optical-
model parameters. Previous calculations of these parameters are shown to lead either to a circumstance in 
which an optical-model description of the decay is inapplicable or to an excitation whose mean energy is far 
off the energy shell. 

I. INTRODUCTION 

IN this paper we study a system which initially con
sists of nuclear matter in its ground state plus an 

extra nucleon in an eigenstate of a single-particle 
Hamiltonian. We utilize a Green's function method1,2 

to evaluate the time dependence of the probability 
amplitude that this system remains in its initial state. 
In certain circumstances the time dependence of the 
actual probability amplitude can be approximated 
satisfactorily for a limited period of time by that as
sociated with an optical model in which the nuclear 
medium remains in its ground state while the extra 
nucleon moves in a complex optical potential. The novel 
aspects of our analysis, absent from previous treatments 
of the low-energy optical potential,3-"8 are: (a) our 
delineation of the requirements which must be satisfied 
for the optical-model probability amplitude to provide 
an adequate approximation to the actual probability 
amplitude, and (b) our explicit verification that an 
approximate "actual" probability amplitude associated 
with the composite system may be represented by one 
associated with the optical model before using the for
mer to calculate the parameters of the optical potential. 

In our analysis we utilize a simple two-nucleon inter
action which (a) describes low-energy nucleon-nucleon 
scattering, (b) yields a saturating ground-state energy 
of nuclear matter, and (c) has previously been employed 
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in a semiphenomenological calculation of the optical 
potential.6 In previous computations of the low-energy 
optical potential,3-8 the nucleons comprising the nuclear 
matter have been treated as moving in a self-consistent 
single-particle potential and the optical potential in 
which the additional nucleon moves has been obtained 
by evaluating the forward scattering amplitude due to 
its (single) scattering from the nuclear-matter nucleons. 
We show that such a procedure is internally consistent 
only if the saturation density of nuclear matter and 
single-particle spectrum of the nuclear-matter nucleons 
are calculated using the same nucleon-nucleon interac
tions and essentially identical computational approxi
mations as those used in the evaluation of the optical 
potential. The use of empirical parameters for the 
saturation density of nuclear matter and the average 
binding energy per nucleon, together with a simple two-
nucleon interaction which describes low-energy nucleon-
nucleon scattering, leads either to the failure of the 
optical-model description of the single-particle excita
tions or to the failure of the assumption, implicit in 
earlier scattering-theory calculations of the optical-
model parameters, that the mean energy of the excita
tion assumes the appropriate noninteracting-particle 
value (i.e., the mean excitation energy is "on the energy 
shell")- By the use of consistency criteria in the deter
mination of the single-particle potential the excitations 
can be constrained to have a mean energy lying on the 
energy shell. However, these criteria usually are not 
satisfied.3-4'6'7 

We also demonstrate that although our internal 
consistency criteria can be satisfied for arbitrary values 
of the density of nuclear matter, the single-particle 
spectrum of the nuclear-matter nucleons must be com
puted separately for each value of the density. In 
particular, the single-particle potential which is ob
tained at the saturation density should not be used in 
calculations of the optical potential at lower densities. 
This result implies that Fermi-Thomas estimates of the 
low-energy optical potential at the surface of a nucleus 
would have to be performed with more than the custom
ary precision.4-6 
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The calculated values of the optical potential are 
related to those obtained from the phenomenological 
analysis of nucleon-nucleus (elastic) scattering experi
ments by assigning (by definition) to the extra nucleon 
in nuclear matter a wave number determined by the 
energy the nucleon would have outside nuclear matter. 

All of the numerical results presented in this com
munication were obtained using the Wheeler-Yamaguchi 
(WY) nucleon-nucleon interaction.9,10 This interaction 
is used for two reasons. First, we can solve the indepen
dent-pair11 scattering problem analytically for such a 
separable interaction. Second, its use permits us to 
compare our results with those obtained by Verlet and 
Gavoret6 in their semiphenomenological investigation 
of the validity of the classical model.12 That the WY 
interaction is an "unrealistic" nucleon-nucleon inter
action is evident both from the phase-shift analyses of 
high-energy nucleon-nucleon scattering13 and from the 
meson theory of nuclear forces. Furthermore, the high 
saturation density of nuclear matter to which it leads 
invalidates the independent-pair model at the satura
tion density. This latter fact constitutues the major 
defect in our numerical calculations. It relegates them 
to the role of "illustrative" rather than quantitative 
calculations. Nevertheless, we present an internally 
consistent perturbation-theoretic treatment of the de
scription of the excitation spectrum in nuclear matter. 
Although it is unfortunate that previous semiphenome
nological calculations proved to be so misleading con
cerning the sensitivity of the results to the selection of 
the two-nucleon interaction, the method is sufficiently 
well-delineated that it now can be applied using more 
realistic nucleon-nucleon interactions. The modifica
tions of the results presented herein needed for the in
corporation of the long-range components of the nu
cleon-nucleon interaction have been discussed else
where.14 

II. THE GREEN'S FUNCTION DESCRIPTION OF 
NUCLEAR MATTER 

In this part of the paper we initially recapitulate a 
few well-known1,2'15 results concerning the Green's 
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function description of large systems. We discuss the 
relation of these results to the more familiar formula
tions16 of the evaluation of the nuclear optical potential. 
In order to calculate the single-particle Green's function, 
we adopt the point of view of perturbation theory and 
focus our attention on the situation in which the range 
of the two-body interactions is smaller than the mean 
which 2(̂ i?//3)3/37r2<<c;i,/3~1 being an average range pa
rameter for the nucleon-nucleon interaction, a suitable 
internucleon separation in nuclear matter. The possi
bility of both clustering17'18 and compressional-mode19 

instabilities in systems of fermions interacting via at
tractive forces has not been explicitly considered. Two 
facts suggest that no serious error is incurred by this 
omission. In addition to other indications that pairing 
instabilities are relatively unimportant near the ob
served nuclear density,17 we find that Cooper poles18 

occur in the independent-pair scattering amplitudes 
only for densities less than or of the order of one-eighth 
of the observed nuclear density. However, a more 
relevant observation is that a zero-energy nucleon out
side nuclear matter should give rise to an excitation in 
nuclear matter with a mean excitation energy above the 
ground-state energy of about 15 MeV. An approximate 
calculation of the width of such an excitation should not 
be sensitive to small errors in the energy spectrum near 
the ground-state energy. 

We carry out the perturbation-theory calculations 
only for two-body interactions which depend upon 
scalar combinations of the spin and isotopic spin 
variables of the interacting nucleons. In particular, most 
of the results are given only for the WY interaction. As 
the WY interaction has no hard core, we treat it in both 
the Hartree-Fock and low-density approximations. 
After some remarks on the determination of a suitable 
approximation for the description of short-lived excita
tions, we finally discuss the calculation of the ground-
state energy and the relation of this calculation to the 
determination of the energy spectrum of low-energy 
single-particle excitations. 

A. Definition of the Boundary Value Problem 

In a description of elastic nucleon-nucleus scattering 
one envisages a system comprised of 4̂ + 1 nucleons 
in which, both prior to and after the scattering event, 
one finds an A -nucleon nucleus in its ground state iso
lated from a nucleon of kinetic energy E{n. In this system 
the A nucleons in the nucleus are bound in a potential 
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well due to their interactions whereas the impinging 
and outgoing nucleons are in eigenstates of the kinetic 
energy operator. If the kinetic energy E{n of the in
coming nucleon is much greater than the binding energy 
of those in the nucleus, we can remove the asymmetry 
between the impinging and bound nucleons by applying 
the impulse approximation20 and treating the latter as 
free. The generation of systematic corrections to this 
model of the scattering process has been discussed 
thoroughly.20 However, our current interest is in values 
of Ein which are comparable to or less than the average 
binding energy of the bound nucleons. In order to cir
cumvent the asymmetry between the bound and im
pinging nucleons, we forego an orthodox treatment of 
the nucleon-nucleus scattering event and analyze an 
initial-value problem. We consider the time develop
ment of the wave function of a composite system which 
initially is comprised of nuclear matter plus an additional 
nucleon which is presumed to have penetrated the sur
face of a "large nucleus" while retaining its free-particle 
energy despite its entry into a dispersive medium. 

The Hamiltonian of the composite system can be 
written as 

H=ZEw(k)ak*ak+i £ <M2| F|k3,k4> 
k k i ,k 2 

k3 ,k4 

Xakl*ak2*auak3, (2.1) 

E«»(k) = T(k)+V(k), (2.2) 

dk(t) = exp(iHt/h)ak exp(—iHt/fi). (2.3) 

We restrict our attention to systems which are isotropic 
so that E(0)(k) depends only on k= |k|.21 The single-
particle kinetic energy is denoted by T(k) and the 
single-particle potential energy by V(k). The single-
particle basis states with respect to which the matrix 
elements (k!,k21 V | k3,k4) of the nucleon-nucleon inter
action are defined are given by 

0 k = (12)-1'2 exp(;k.r)X™i/2\
wi/2 (2.4) 

in which r is the position of the nucleon, m is its spin 
projection quantum number, and u is its isotopic spin 
projection quantum number. The latter two variables 
have been suppressed in our generic "k" notation. The 
symbol 0 denotes the volume of the large system, and 
the ak(t) are the Heisenberg representations of the 
annihilation operators ak denned on an antisym-
metrized basis of the single-particle states given by (2.4). 
Using Eqs. (2.1) through (2.4) we replace the original 
scattering problem by an initial-value problem in 
nuclear matter. The initial (Schrodinger) state vector 
of the composite system is schematically indicated by 

|x(/=0)> = ak*(0)|¥0>, (2.5a) 

E«»(k)=Ein, (2.5b) 
20 See, i.e., M. L. Goldberger and K. M. Watson, Collision 

Theory (John Wiley & Sons, Inc., New York, 1964), Chap. 11. 
21 See also, W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41 

(1960); J. M. Luttinger and J. C. Ward, ibid. 118, 1417 (1960). 

for any selection of the single-particle potential V(k). 
We have denoted by | ̂ o) the state vector of the lowest 
energy eigenstate of the nuclear medium. It is evident 
that if 7 (^)^0 then both the nucleons originally in 
the nuclear matter and the extra nucleon all find them
selves in the same single-particle potential. We use the 
definition of energy conservation through the "surface 
region" of nuclear matter to calculate via equation 
(2.5b) the value of the wave number of the extra nu
cleon in terms of its free-particle kinetic energy. When 
the extra nucleon is inserted it polarizes the medium 
and thereby influences the latter's wave function. It is 
convenient in perturbation-theory calculations of 
\x(t=0)) and related quantities to utilize definitions of 
£(0)(&) which incorporate some of the effects of this 
polarization. In the Hartree-Fock and low-density ap
proximations, the polarization occurs via the exclusion 
principle and the forward scattering of the nucleons in 
the medium from the inserted nucleon. In principle, 
these effects are accounted for by including k as an 
occupied state in the definition of the self-consistent 
potential V(k). In practice, we usually describe the 
single-particle potential in the effective-mass approxi
mation and ignore the polarization of the medium. 

The probability amplitude that the system with the 
state vector | x (^=0)) at /=0 will still be described by 
the same state vector at a subsequent time t> 0 is known 
to be1-2 

Pk(t) = (*o\ak(t)ak*(0)\*o)=:-iG(kyt); t>0. (2.6) 

The quantity G(k,t) is the time-ordered, single-particle 
Green's function defined by 

G(k,t) = i(*o\T[ak(t)ak*(Q)l\*o) (2.7) 

in which T denotes the Wick time ordering operator.1-2 

The Fourier transform of G(k,t) is given by 

exp(iEt/h)G(k,t)dt. (2.8) 
-00 

The properties of G(kfE) as a function of the complex 
variable E for fixed values of k have been studied 
extensively.1,2,14'15 We note only that G(k,E) admits a 
Lehmann-Kallen representation 

G(k,E) = G<+) (k,£)+G<-> (k,E), (2.9a) 

GW(k,£)=lim / , (2.9b) 
A-+O+7O x+fx—E—iA 

G<->(k,£)=lim / , (2.9c) 
A->O J0 fx—x—E+iA 

in which p is the separation energy of a nucleon from 
nuclear matter. At the saturation density, the separa
tion energy is independent of the number of nucleons in 
the nuclear matter. In the future we will not explicitly 
indicate the A—>0+ limit. The spectral functions 
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gk(+)(#) a n d gk^OO satisfy the sum rule 

/ 
(2.10) 

The optical model consists of an approximate descrip
tion of the composite system in which changes in the 
state of nuclear matter are ignored while the additional 
nucleon is considered to move in a complex single-
particle potential. In such a case Pk(t) would become 

P*(t) = c(k) exp(iE0(k)t/h~T(k)t/ft), (2.11) 

which is known14,22 to be inconsistent with Eqs. (2.9). 
However, if the spectral function 

^ k ( + ) ( £ - M ) - W - 1 I m [ G ( k , E ) ] ; E>>x (2.12a) 

is well approximated by the form 

ImG(k,E)-[*r(k)c(k)1/[_(E0(k)-£)2+r2(&)] (2.12b) 

near E=EQ(k), then when (E0 (k) - j u ) » r (*), Eq. (2.11) 
provides a satisfactory approximation to Eq. (2.6) 
during the time interval14,23 

(fi/AE)<t<{fi/Y(k)-] (2.13) 

in which AE is the energy interval over which the ap
proximation of (2.12a) by (2.12b) is satisfactory. In 
the event that AE>2T(k), we say that the system 
exhibits approximate single-particle motion14 and that 
the optical model is valid for scattering events in which 
the nucleon-nucleus interaction occurs during time 
intervals specified by (2.13). The depths of the real 
and imaginary parts of the optical potential are given by 

V(Ein)=E0(k)-T(k), (2.14a) 

W(Ein) = -T(k), (2.14b) 

respectively, as functions of the bombarding energy E\n. 

B. Evaluation of the Green's Function 
by Perturbation Theory 

In this section we present two perturbation-theory 
calculations of G(k,E): the Hartree-Fock approximation 
and the low-density approximation. By using perturba
tion theory the Green's function may be written as 

G(k,£) = [Go"1 (k,E) - 2 ( M ) ] - 1 , (2.15) 

G0(h :,£) = »[• 
E^(k)-E~iA 

+ 
»«»(*) 

EW(k)-E+iA. 
—1 
S+tAJ ' 

(2.16a) 

22 D. J. Thouless, The Quantum Theory of Many-Body Systems 
(Academic Press Inc., New York, 1961), p. 69. 

23 P. Nozieres, Theory of Interacting Fermi Systems (W. A. 
Benjamin, Inc., New York, 1964), p. 70. 

»<°>(ft) 
1; k=*\k\<fa 

0; & = | k | > M ' 

kF=Z&i*n/(2s+l)(2i+l)Ji*, 

(2.16b) 

(2.16c) 

in which kF is the Fermi wave number of the noninter-
acting Fermi gas used as the zeroth-order description 
of the composite system; s is the spin of the individual 
fermions; i is their isotopic spin; n is the particle density 
of the system; and E(0)(k) is specified by Eq. (2.2). 
The quantity 2(k,E) , referred to as the proper self-
energy of a nucleon characterized by the quantum num
bers k, is expressed in perturbation theory as an in
finite sum of diagrams. Only the final expressions ob
tained by the use of diagrammatic methods are pre
sented herein because the methods themselves have been 
described elsewhere.2*14 

Our analysis has been performed for nucleon-nucleon 
interactions which depend upon scalar combinations of 
the spin and isotopic spin variables of a pair of interact
ing nucleons. In a representation characterized by the 
spin (S) and isotopic spin (7) of the pair, together with 
the momenta of the individual fermions, the matrix 
elements of the nucleon-nucleon interaction become: 

= 5j,j/5 iSf,5'[<ki,k2| F j ^ | k 3 , k 4 ) 

-(-iy^(k2,ki\Vrs\khk^ (2.17) 

The subscript A signifies that the matrix element is 
evaluated with respect to an antisymmetrized two-body 
basis; bij> denotes the Kronecker delta; and Vis 
designates the nucleon-nucleon interaction in the iso-
topic-spin state 7 and spin state S. We introduce the 
definitions 

P=k3+k4, 
F=k1+k2, 

p=J(k8-k4), 

pWfa-fe). 

(2.18a) 

(2.18b) 

(2.18c) 

(2.18d) 

Confining our attention to the WY interaction,9*10 we 
obtain 

<ki,k2 |Frs|k8 ,k4) 

= 5 ( P - P ' ) (-h*\I8/m)gIS(p
f)gIs(p), (2.19a) 

gia{p)=tf+Pif)-\ (2.19b) 

in which m denotes the average nucleon mass and 5(x) 
is the Dirac delta function. From (2.17) and (2.19) 
we see that only the (7=0, S= 1) and (7= 1, 5 = 0 ) WY 
interactions possess nonvanishing antisymmetrized ma
trix elements. The nonvanishing matrix elements are 
augmented by a factor of two because of the antisym-
metrization. The values of the parameters in (2.19) 
obtained from the neutron-proton effective range data13 

are presented in Table I. They adequately describe the 
neutron-proton total cross sections for relative energies 
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TABLE I. Parameters of the Wheeler-Yamaguchi (Refs. 9 and 
10) interaction obtained from the neutron-proton effective range 
data (Ref. 13). The Wheeler-Yamaguchi interaction is specified 
by Eqs. (2.19) in the text. 

Spin S Isotopic spin / \is Pis 

1 0 0.425 F"3 1.46 F"1 

0 1 0.154 F"3 1.18 F- 1 

below 80 MeV and are used throughout our numerical 
work. 

As the WY interaction possesses no hard core we can 
evaluate the Hartree-Fock contribution to the proper 
self-energy. Using an arbitrary scalar nucleon-nucleon 
interaction, we obtain the result 

S(H.F.)(k,f»,w,JB) = - ( 4 f t ) - i Z (2/+l)(2S+l)»<°>(/) 
i,s,\ 

X « k , l | VIS\k,l)- ( - l ) * " < l , k | 7 M | k , l » , (2.20) 

which is independent of the spin and isotopic spin 
projection quantum numbers, m and u, respectively, of 
the nucleon with wave vector k. The Hartree-Fock 
contribution to the proper self-energy is evidently 
independent both of the value of E and of the direction 
of k. Therefore, we may incorporate it into the zeroth-
order single-particle Green's function by use of the 
single-particle potential 

= -*2<H-F->(*,w,«,£). (2.21) 

The use of (2.21) eliminates all diagrams with equal-
time self-energy insertions from the perturbation-theory 
expression for the proper self-energy.14,24 In the event 
that the extra nucleon is inserted with | k |=&F and 

We require that Ei0)(k) be independent of the spin and 
isotopic spin projection quantum numbers. Such is the 
case for the kinetic energy and, as we see from (2.20) 
and (2.21), the Hartree-Fock single-particle potential. 

Equation (2.24) is evidently just a restatement of the 
Brueckner-Bethe-Goldstone equation.11 For computa
tional convenience we treat the single-particle energies 
E(fi)(k) in the effective mass approximation, i.e., 

V(k) = - Vo+h2k2/2a, (2.25a) 

EM(k) = -Vo+&&/2m*, (2.25b) 

m* = ma/(m+<r). (2.25c) 

We do not consider the extension of Eqs. (2.25) to 

24 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 

the nucleons interact via the WY interaction we obtain 

7CH.F.) (*)= _ (12irh*/i»)Zfa8/frs) 
I,S 

r(kF+ky+4f3IS
2-\) 

- G W A ) l n - . (2.22) 
l(kF~ky+^IS

2J\ 

If the added nucleon does not lie at the Fermi surface 
special provision must be made for its contribution to 
the 1 sum in (2.20). 

Envisaging nuclear matter to be a low-density gas in 
which 2(kF//3y/37r2<Kl, fi~l being an average range 
parameter for the nucleon-nucleon interaction, a suitable 
approximation to the proper self- energy is obtained by 
selecting only those diagrammatic contributions to it 
which are linear in the density.2»14'25 In the absence of 
external fields (i.e., any single-particle potentials arise 
solely from the nucleon-nucleon interactions themselves) 
we obtain the low-density approximation to the proper 
self-energy: 

»Z<L-D->(k,*»,«,jE) 

= V(k)-(4)~l £ ( 2 5 + l ) ( 2 / + l ) » ( 0 ) ( / ) 
i,s,i 

XZ(Kl\TIS(E+E«»(l))\k,l) 

- ( - 1 ) ^ ( 1 , k\TI8(E+E«»(l))\k, 1>], (2.23) 

which, like the Hartree-Fock self-energy, is independent 
of m, u, and the direction of k. Therefore, we will no 
longer explicitly indicate these variables in our symbol 
for the proper self-energy. The quantity TiS(x) is 
defined by the integral equation 

momentum-dependent values of the effective mass.5,26 

For the single-particle potential given by (2.25), Eq. 
(2.24) can be solved analytically for separable nucleon-
nucleon interactions as discussed in Ref. 27, hereafter 
referred to as DI . The scattering amplitudes calculated 
in DI are not directly proportional to the T matrix of 
Eq. (2.24) because in the analytically continued scat
tering amplitudes the value of x is a function of the 
values of k and 1. The solution to (2.24) is obtained 
from Eq. (13) in D I by (a) requiring k = kf in the 

25 In the case of hard-core two-body interactions j3-1 is taken to 
be the zero-energy scattering amplitude. Detailed references to 
the literature may be found in Ref. 2. 

26 See also, e.g., J. Dabrowski and J. Sawicki, Nuel. Phys. 22, 
318 (1961). 

27 C. B. Duke, Ref. 11. 

<k , l | r / f l (* ) | k , l>=<k , l | 7 j f l | k , l>+E 
k'V 

(Ml Vis\k',V)-(i-nC»(k'))(l-n^(nWX\Tis(x)\k,l) 
(2.24) 
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FIG. 1. The solid line is a schematic representation of the spec
tral function associated with a system which exhibits approximate 
single-particle motion. The dashed line shows the model Lorentzian 
spectral function which best approximates the actual spectral 
function near the latter's maximum. The width T (k) of the model 
spectral function and an appropriate energy-averaging interval 
/ are also indicated. 

numerator of that formula and giving them both the 
value \p\ kenned in (2.18c), and (b) calculating % in 
the denominator of (13) in DI by use of Eq. (16) re
lating ko to our energy variable E via Eqs. (17) and 
(18). The quantity E in Eq. (2.23) is denoted by Ex in 
DI. We have not succeeded in performing the last two 
of the three 1 integrals in (2.23) analytically. We recall 
from DI that the T matrix exhibits singularities the 
location of which depends on the total momentum P 
of an interacting pair and on the Fermi wave number, 
kp, as well as on the relative energy of the pair. The 
numerical methods used to perform the singular inte
grals occurring in (2.23) are discussed in Sec. III. 

Before discussing the low-density approximation in 
more detail we comment on its relation to the optical-
model description of low-energy nucleon-nucleus scat
tering. The fundamental concept on which the optical 
model is based is that the model describes the "energy-
averaged" cross sections observed in low-resolution 
experiments.16,28 Therefore, in our initial value problem 
we expect it to describe those short-lived excitations 
obtained from a Green's function averaged over an 
energy interval I>0.1 MeV. The energy average of a 
function like G(+)(k,E) which has singularities only 
for lm(£)<0 is conveniently obtained using the 
definition28,29: 

r" (I/ir)G(kyE)dE 
<G(k,£0)>av^ =G(k,E0+iI) (2.26) 

;_« (E~Eo)2+P 

for an average taken about the real energy EQ. If the 
concept of an optical model provides an adequate de
scription of the composite system then, in accordance 

28 G. E. Brown, Rev. Mod. Phys. 31, 893 (1959). The author 
is indebted to Professor Brown for several informative discussions 
concerning the material presented in the remainder of this section. 

29 A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 
(1958), Sec. XI. 

with the results of the previous section, we envisage 
the situation illustrated in Fig. 1. If (a) 7<<Cr(&) and 
(b) (Eo—T(k)y^>n, as shown in the figure, then by the 
use of (2.26) and (2.9b) we obtain the result 

Jo x+fx—Eo—H 

^G(k,E0). (2.27) 

Because we require only the average Green's function 
for the calculation of an optical potential, the validity 
of the low-density approximation as a description of the 
composite system is a sufficient but not necessary con
dition for the approximation to provide an adequate 
estimation of the validity and parameters of the optical 
model. As emphasized by Brown,28 the necessary condi
tions for the applicability of (2.23) in describing the 
decay of an energy-averaged single-particle excitation 
are (a) the dominance of incoherent two-body scatter
ings in determining the initial decay mechanism of the 
excitation, and (b) the requirement that the replenish
ment of the initial state by processes of higher order in 
the density (i.e., multiple scattering) create fine struc
ture in the spectral function whose energy width, rcorr, 
is considerably less than T(k). If these conditions are 
satisfied, then by selecting r c o r r</<r(£) we can elimi
nate via Eq. (2.27) the influence of the higher order 
terms on the average single-particle Green's function. 
The extent to which the higher order effects are evident 
in a particular scattering experiment depends on the 
energy resolution with which the experiment is 
performed.4,30 

Once the nucleon-nucleon interaction has been 
specified and the saturation density of nuclear matter 
calculated in the low-density approximation, we justify 
the use of the low-density approximation by estimating 
higher order corrections to the proper self-energy. The 
long-range components of the nucleon-nucleon interac
tion could cause the excitation of collective modes in 
nuclear matter to be an important decay mechanism 
for the single-particle excitation. The relevant contribu
tion to the proper self-energy may be obtained by sum
ming the contributions due to the particle-hole "polari-
zation" diagrams.14,31 However, for the nonsingular 
short-range WY interaction we shall consider only 
those terms in the expansion for the self-energy which 
are quadratic in the density. There are four types of 
these terms: (1) those arising from the use of the low-
density propagators in the final term of Eq. (2.24); 
(2) those resulting from particle-hole interactions which 
occur after the first scattering of the extra nucleon from 

30 See also A. K. Kerman, L. R. Rodberg, and J. E. Young, Phys. 
Rev. Letters 11, 422 (1963); R. H. Lemmer and C. M. Shakin, 
Ann. Phys. (N. Y.) 27, 13 (1964). 

31 The diagrammatic analysis was first given by J. Hubbard, 
Proc. Roy. Soc. (London) A240, 539 (1957) for the high-density 
electron gas. G. E. Brown, J. A. Evans, and D. J. Thouless, 
Nucl. Phys. 24, 1 (1961) have applied similar methods to describe 
collective vibrational oscillations in closed-shell nuclei. 
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one of those in the nuclear matter; (3) those arising 
from the presence of correlations in the ground-state 
wave function of nuclear matter; and (4) those resulting 
from triple interactions between the incident nucleon 
and one in nuclear matter in which one of the interac
tions is "shielded" by a particle-hole intermediate state. 
Detailed estimates of these terms are unwarranted for 
the WY interaction because the high saturation density 
to which it leads indicates the prima facie failure of a 
low-density expansion. Both Brown28 and Shaw4 have 
performed semiphenomenological estimates of some 
of the above terms. Their results are consistent with 
the above picture provided we select I^T(k)/3. 

C. Determination of the Ground-State 
Properties of Nuclear Matter 

Galitskii and Migdal1 have shown that the momentum 
distribution of the particles in a uniform many-fermion 
system and its ground-state energy are given by 

FIG. 3. The solid 
line represents the sin
gle-particle potential, 
F<H-F->(&), calculated in 
the Hartree-Fock ap
proximation for the 
Wheeler- Yamaguchi9 >10 

interaction at the Har
tree-Fock value of the 
saturation density, kF 
= 2.965 F"1. The dashed 
and dotted lines show 
two effective-mass ap
proximations to F ( H ,^ - ) 

(k) characterized by Vo 
=391.7 MeV, *• = 1.079 
m and V0=435.3 MeV, 
<r=0.858 m, respectively. 

n (k) - lim (i/2vh) exp (iEA/h)G (k,E)dE, 
A-+0+ ' 

(2.28) 

-250 

-300 

V(k) 
(MeV) 

-350 

-400 

- 1\ 
I 

/J 
/If 

/If 

i 1 i 1 i 1 i 1 l . . 

EG= \im(i/2wh)j: / exp(iEA/h) 
A-^0+ k J _ ( 

<X2 0.4 

k/kr 

0.6 0 3 1.0 

X{T{k)+{\/2)[V{k)~fiL{k,E)-]}G(k,E)dE, (2.29) V(k) and reduce (2.29) to the form 

respectively. The single-particle potential, v V (k), in 
(2.29) is caused by the interactions between the fermions 
and is not due to external fields. If we use an approxima
tion for 2J (k,E) in which it depends only on | k |, then 
we can incorporate all of 2(k,E) into the definition of 

£ G = £ » ( * ) [ T ( * ) + P W 2 ] (2.30) 

E6/N 
(MeV) 

FIG. 2. The solid line represents the binding energy per nucleon, 
EG/N, calculated in the Hartree-Fock approximation for the 
Wheeler-Yamaguchi (Refs. 9, 10) interaction. The dashed line 
indicates the empirical value of the Fermi wave number (Ref. 37). 

in which n(k) is defined by (2.28). The most evident 
such approximation is the Hartree-Fock approximation 
(2.20) which, for our nonsingular WY interaction, yields 

EG= (3ntth2kF
2/10m)Zl-4:0T £ MIS~], (2.31a) 

MIS=\IS[X+UI8 tevrl(Uia) 

- {UIS-
2+3/2) lna+l/jfl8)] , (2.31b) 

Urs=kF/^Is. (2.31c) 

The sum over (I,S) in (2.31a) runs over (/,£)= (1,0) 
and (0,1). The binding energy per nucleon as a function 
of the Fermi wave number is shown in Fig. 2. The mini
mum value of EG/N, N=titi, occurs at & F = 2 . 9 6 5 F - 1 

and is given by 

T(kp) + V(kF) = E0/N=-39.9 MeV. 

The large saturation density and binding energy per 
nucleon are characteristic of simple s-wave potentials 
without a hard core.32 The single-particle potential, 
F<H-F->(&), calculated at the saturation density, is 
shown in Fig. 3 together with two effective-mass ap
proximations to it. The effective-mass approximation 

! H. A. Bethe, Phys. Rev. 103, 1353 (1956). 



B66 C. B. DUKE 

shown by the dashed line results from selecting 
F0=391.7 MeV and er= 1.079m in (2.25) in order to fit 
7<H-F->(£) for Q.9kF<k<kF. The dotted line shows the 
best over-all fit to F(H-F,)(&) and is characterized by 
F0=435.3 MeV and <r=0.858m. The discrepancy be
tween the two values of a is a measure of the inadequacy 
of the effective-mass approximation as a description of 
the single-particle energy spectrum. 

In a perturbation-theory calculation of S(fe,£) we 
must recognize the special role of the Fermi surface: 
Any excitation with k = kF must be stable and possess 
the separation energy ix defined by33 

E ( 0 ) ( * F ) - M - * S ( * F ^ ) = 0 , (2.32) 

2(kF,fi) is real. (2.33) 

The value of /z obtained from (2.32) depends upon the 
selection of the single-particle potential V(k). If we 
select V(k) by requiring that the noninteracting-particle 
term of the Hamiltonian (2.1) yield a description of the 
system which exhibits the correct separation energy, 
then we obtain the stronger criterion 

E<V(kF)=v, (2.34a) 

2(kF,v) = 0, (2.34b) 

which is a self-consistency criterion on the choice of 
V(k). In the Hartree-Fock approximation Eqs. (2.34) 
are satisfied identically. In general, a sensible definition 
of a self-consistent energy spectrum for all values of k 
is provided by the requirements 

E0(k)=E^(k), (2.35a) 

ReDS(A,£^(*))] = 0. (2.35b) 

Equations (2.35) are the analogs of (2.34) for an arbi
trary value of k. They define a single-particle spectrum 
with the property that if the system exhibits approxi
mate single-particle motion in the sense of Sec. A, the 
mean energy of an excitation lies at the energy predicted 
by the noninteracting-particle term of (2.1). 

In the low-density approximation the exclusion prin
ciple requires that 2<L-D->(ife,£) be real for E<E^(kF). 
Only if (2.34) is used to define /x are the perturbation-
theory restrictions due to the exclusion principle treated 
in a manner which is internally consistent with the more 
accurate treatment of the dynamics contained in the 
evaluation of 2<L-D->(*,E). The application of (2.34) 
and (2.35) in the low-density approximation is discussed 
in the Appendix. In this Appendix we also discuss the 
major sources of the distinction between our approach 
and the application of Puff's34method to uniform nuclear 
matter. 

The final formulas for n(k) and EG computed in the 

33 J. M. Luttinger, Phys. Rev. 119, 1153 (1960). 
34 R. D. Puff, Ann. Phys. (N. Y.) 13, 317 (1961); D. S. Falk and 

L. Wilets, Phys. Rev. 124, 1887 (1961); J. C. Reynolds and R. D. 
Puff, ibid. 130, 1877 (1963); A. S. Reiner, ibid. 133, B1105 (1964). 

low-density approximation are given by 

W(L.D.) W = {1+hdp(L.D.) (k,E)ydE)-iE-E*ik); (2.36) 

EG=Z »<L-D->(*)pT(*) + 7(*)/2 

k 

-(h/2)2W->(k,Eo(k))l; Eo(k)</x (2.37) 

Eo(k)-EW(k)+h2<L-»->(k,Eo(k)) = 0. (2.38) 
Equation (2.38) defines Eo(k) for an arbitrary selection 
of V(k) with 2<L-D->(£,E) being given by Eqs. (2.23) 
and (2.24). The sum over k in (2.37) runs only over 
those values of k for which Eo(k) </z. If, in addition to 
(2.38), we utilize the consistency criterion (2.34), the 
sum over k in (2.37) runs over all | k| <kF. The satura
tion density is calculated by computing EQ/N for dif
ferent numerical values of kF, enforcing the desired 
consistency criteria for each of the numerical values, 
and minimizing the resulting EG/N as a function of kF. 
It is well known that the Hartree-Fock approximation 
yields a minimum value of EG/N for which the Hugen-
holtz-Van Hove relation35 is satisfied, i.e., 

EG/N= (dEQ/dN)Q=» = E<t»(kF). (2.39) 

However, the low-density approximation is not expected 
to satisfy (2.39) because (a) #(L-D-)(^) instead of n(0)(k) 
occurs in Eq. (2.37), and (b) factors of n{Q)(k) occur in 
the second term of (2.24). Our approach can be made 
analogous to that of Puff34 via the introduction of 
coupling between Eqs. (2.23), (2.24), (2.36), and (2.38) 
by employing w(L-D,)(&) rather than n(0)(k) and Eo(k) 
in lieu of E«»(k) in (2.23) [but not in (2.24)]. 

A systematic low-density calculation of the saturation 
density and binding energy per nucleon has not been 
performed. For the nonsingular WY interaction the 
Hartree-Fock approximation is expected to be reason
ably accurate at high densities.82 The qualitative nature 
of the anticipated results indicates that more precise 
computations are unwarranted. 

We observe that (a) the Hartree-Fock calculation of 
EG/N as a function of kF yields a curve which is flat 
near the saturation density, and (b) near the saturation 
density the values of a obtained from the Flartree-Fock 
single-particle spectra are insensitive to changes in the 
value of kF. Therefore we can enforce the satisfaction of 
(2.34) for the calculation of the excitation spectrum by 
a simple expedient. Using the effective-mass-approxima
tion potential shown by the dotted line in Fig. 3 and 
computing 2<L-D->(^,£<°> (£*.)) from (2.23) and (2.24), 
we lower the value of kF from the Hartree-Fock satura
tion value until (2.34) is satisfied. This procedure yields 
^F=2.940F~1 and/*= -46.7 MeV. Although the change 
in the value of kF exhibits the opposite sign to that 
which we would obtain by a systematic application of 
the low-density approximation, we estimate that /x, Vo, 
a, and kF lie within a few percent of the values which 
they would assume as a result of their computation in 
the low-density approximation. 

35 N. M. Hugenholtz and L. Van Hove, Physica 24, 363 (1958). 
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III. CALCULATIONS OF THE EXCITATION SPECTRA 

A. Computational Procedure 

The single-particle Green's functions are calculated 
from (2.15), (2.23), and (2.24) as described in Sec. IIB. 
Although (2.24) can be solved analytically for the WY 
interaction, the sum over occupied states in (2.23) must 
be performed numerically. As the sum over 1 exhibits 
azimuthal symmetry about an axis along k, we use the 
relation 

E n^ (/) -> (2TT)-2 J Pdl / d(cos0k.i). (3.1) 
1 Jo J-i 

We found in DI that when off-energy-shell propagation 
is considered, the T matrices exhibit singularities the 
locations of which are not easily specified. The failure 
of the independent-pair scattering problem to possess 
solutions at the values of the relative momentum as
sociated with these singularities indicates that a princi
pal-value boundary condition should be used in the 
integration in (2.23).86 

The integrations were performed using a computer 
program written by the author for the GE 225. In this 
program provisions are made to automatically locate 
any singularities of the integrand and provide principal-
value boundary conditions about the singular point. 
In order to save computing time, the integration in the 
neighborhood of a singularity was adjusted to provide 
only 0.5% accuracy. The initial numerical grid, prior 
to the (automatic) detection of rapid variations in the 
integrand, is specified by 

cos0k.i=-1.0(0.142)1.0, 
(3 2) 

l=0.0kF(0.2kF)1.0kF. ' 

Sample calculations performed with a more refined 
grid indicate that the use of (3.2) yields results which 
are accurate to within 0.5% except for low densities 
or large values of | k |. In these situations the integrands 
possess many singularities. 

B. Excitation Spectra at the Saturation Density 

In Fig. 4 are shown the spectral functions associated 
with several values of the free-particle energy of the 
extra nucleon. These spectral functions were computed 
in the low-density approximation. The single-particle 
spectrum of the nuclear-matter nucleons was treated 
in the effective-mass approximation by using the single-
particle potential shown by the dotted line in Fig. 3. 
We see that an optical-model description of the excita
tions is justified at all of the free-particle energies con
sidered. The parameters of the optical poential are 
presented in Table II. The sum rule (2.10) is satisfied 
to within 20% by all of the spectral functions shown 
in Fig. 4. The spectral functions associated with low 

36 A derivation of the validity of this result for the calculation of 
the ground-state energy is found in Ref. 18. 

FIG. 4. The solid curves represent spectral functions calculated 
using the Wheeler-Yamaguchi interaction (Refs. 9,10), in the low-
density-gas approximation from Eqs. (2.1), (2.2), (2.12a), (2.15), 
(2.23), and (2.24) in the text. The single-particle potential used in 
the calculation is shown by the dotted line in Fig. 3. The value of 
kF was taken to be 2.940 F - 1 . The dashed line in the figure 
indicates the energy-shell value of E = E[n. 

values of E-in yielded the largest deviations from unity 
of the integral in (2.10). 

We see in Fig. 4 that, as the energies of the excitations 
move further above the Fermi energy, they also move 
below the corresplnding noninteracting particle en
ergies. This "off-energy-shell propagation" of the excita
tions reflects the inadequacy of the effective-mass ap
proximation for the single-particle energies. This aspect 
of the effective-mass approximation has long been real
ized.5'11-26 In our formalism it can be remedied by the 
use of more terms in expansion (2.25a) plus the self-
consistency requirement (2.35). 

From Table II we find that our values of the imagi
nary part of the optical potential differ from those ob
tained by numerous other authors3"8,12 only in that they 
rise more slowly with increasing values of Ein. This fea
ture of the results is a consequence of the large value of 
the saturation density obtained with the WY interac
tion. However, almost all calculations based on the 
independent-pair model or its semiclassical limit yield 
values of the imaginary part of the optical potential 
which are equal to within a factor of abour 2.14 The 
novel features of our calculation are that (a) we explic
itly verify the applicability of the concept of an optical 

TABLE II. Parameters of the optical potential associated with 
the spectral functions shown in Fig. 4. 

k/kF 

1.010 
1.020 
1.040 
1.058 
1.070 
1.080 
1.090 
1.100 

Ein (MeV) 

-38 .9 
-31 .0 
-15 .0 
- 0 . 4 

9.6 
17.9 
26.3 
34.9 

V(Ein) (MeV) 

-223.4 
-220.4 
-214.5 
-209.2 
-205.7 
-202.8 
-200.0 
-197.3 

W(Ein) (M 

-0 .09 
-0 .18 
-0 .36 
-0 .52 
-0 .63 
-0 .72 
-0.82 
-0 .91 
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FIG. 5. The solid and dashed lines represent spectral functions 
associated with Ein = 27.2 MeV and 79.3 MeV, respectively. The 
single-particle potential used in the calculations is specified by 
Eqs. (2.25) in the text with F0=47.2 MeV and m* = 0.8m. These 
values as well as that of JZF= 1.197 F_1, are identical with the ones 
used in Ref. 6. The computations were performed using the 
Wheeler-Yamaguchi (Refs. 9,10) interaction and Eqs. (2.1), (2.2), 
(2.12a), (2.15), (2.23), and (2.24) in the text. 

model for excitations inside nuclear matter (the only 
case in which the low-energy independent-pair-model 
calculations are well denned); and (b) we obtain the 
actual energy of the excitation without resorting to an 
a priori assumption that it is on the energy shell for 
some (specified) value of the effective mass. We feel 
that despite the qualitative nature of the numerical 
results, the above two accomplishments represent a 
substantial clarification of the nature of the nuclear-
matter estimates of the optical-model parameters. This 
clarification is particularly interesting because in the 
next section we demonstrate that for low-energy incident 
nucleons, the semiphenomenological calculations of 
VG6 either do not correspond to a situation in which 
the concept of an optical model is applicable, or else 
lead to propagation which is off the energy shell by 
about 20 MeV in contradiction of their implicit a priori 
assumptions. 

C. Failure of Semiphenomenological Calculation 
of Optical-Model Parameters 

We classify as "semiphenomenological" any nuclear-
matter calculation of optical-model parameters in 
which the properties of the nuclear matter are not ob
tained by using the same nucleon-nucleon interactions 
and equivalent approximations as those used in the 
calculation of the optical-model parameters themselves. 
For energy-shell propagation our calculations are almost 
identical to those of VG.6 Therefore, we can illustrate 
the difficulties inherent in one particular semiphenome
nological calculation by reperforming their analysis 
using our more general method. Following VG, we con
sider the nucleons in nuclear matter to move in the 
single-particle potential given by (2.25) for which 

m>* = 0.8tn and Vo is determined by requiring a nucleon 
with |k | = ^ F = 1 . 1 9 7 F - 1 to have a binding energy 
E(0)(kF)=n= —10 MeV. We verify the equivalence of 
their calculation and ours by observing that for w* = m 
we recover the results given in Table I of Ref. 6 to 
within a few percent by using the definitions 

VB=V(k)-ft Re[2<L-D->(£,£«>> (£))] , (3.3a) 

•Ois-*ImCS<L-D->(*,E°> (*))] . (3.3b) 

The linearization factor of1'14 

{l+hd\K&<:L'J>'>(k,E)']/dE}-1
Jsm.B« w (3.4) 

has been omitted from the definition of Vi in order to 
achieve compatibility with the definitions of VG. 

The values of VR and Vi calculated by VG correspond 
to those of V and W, respectively, in Eqs. (2.14) pro
vided that the assumptions 

E0(k) = E<°> (k) = WP/2m*-Vo, (3.5a) 

fi{dlReE^^(k,E)-]/dE}E=E0(k)«l- (3.5b) 

are satisfied. We calculated the spectral functions as
sociated with Ein= - 1 0 MeV, 27.2 MeV, and 79.3MeV 
corresponding to the energies in Table I of Ref. 6. The 
spectral functions associated with £ i n =27 .2 MeV and 
79.3 MeV are shown in Fig. 5. For Ein= -10 MeV, the 
spectral function gk ( - )(#) exhibits a delta-function 
peak whereas gk(+) (%) is almost invisible on the scale of 
Fig. 5. Assumption (3.5b) is satisfied only for Ei n=79.3 
MeV. We see from Fig. 5 that assumption (3.5a) can 
be satisfied only for Ein>S0 MeV. The satisfaction of 
(3.5a) for large values of E-m is expected because for 
these values of E{n the impulse approximation is 
valid.20 For values of Ein below 27 MeV, EQ(k) lies 
more than 20 MeV below E(0) (k). This failure of assump
tion (3.5a) indicates the occurrence of a serious in
consistency in the energy-shell calculations of optical-
model parameters. 

The use of a more recent value of the nuclear den
sity,37 yielding ^ = 1 . 4 2 F " 1 , and the volume binding 
energy per nucleon in nuclear matter of —15.8 MeV38 

fails to mitigate the difficulties inherent in the calcula
tion of VG. This result is illustrated in Figs. 6 and 7 in 
which spectral functions associated with Em=27 MeV 
and 79 MeV, respectively, are presented. These figures 
also demonstrate the importance of using "dressed" 
nucleons in a polarized medium as the noninteracting-
particle basis states in a perturbation-theory calcula
tion. If such a set of basis states is not used (i.e., 
m* = m in our calculations), then we see from the figures 
that an optical-model description of the excitation 
spectrum is appropriate only at energies sufficiently 
high that we recover the validity of the impulse ap
proximation. This fact suggests the inadequacy of an 
analysis of surface effects by the use of a local Fermi-

37 D. G. Ravenhall, Rev. Mod. Phys. 30, 430 (1958). 
38 A. E. S. Green, Rev. Mod. Phys. 30, 569 (1958). 



L O W - E N E R G Y E X C I T A T I O N S I N N U C L E A R M A T T E R B 6 9 

Thomas approximation, a technique which fails to 
describe the mechanism by which the extra nucleon 
acquires additional kinetic energy as it moves into the 
dispersive nuclear medium, 

Several calculations similar to those of VG have been 
performed using Serber interactions with Yukawa form 
factors.3,4 As these interactions do not lead to a satura
tion density of nuclear matter, the corresponding calcu
lations of the optical-model parameters suffer from in
consistencies like those found above. Three of the extant 
calculations of the optical-model parameters4 '5,39 have 
been performed using two-body interactions for which 
the nuclear-matter saturation problem has also been 
analyzed. However, only Reiner,39 who employs Puff's 
methods,34 utilizes in the optical-model calculation those 
values of the saturation density, binding energy per 
nucleon, and single-particle energy spectrum which 
emerge from the ground-state-energy analysis. 

The fundamental origin of the inconsistencies in the 
semiphenomenological calculations resides in their fail
ure to satisfy (2.34). This failure results from the fact 
that the simple nucleon-nucleon interactions used to 
describe the low-energy scattering data are too strongly 
attractive to cause nuclear matter to saturate at the 
observed density and binding energy per nucleon. The 
use of these interactions to describe the low-density 
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FIG. 6. The solid and dashed lines represent spectral functions 
calculated using the single-particle potentials specified by Eqs. 
(2.25) in the text with F0 = 85.7 MeV, ra* = 0.6m and F0 = 57.7 
MeV, m* = m, respectively. Both spectral functions are associated 
with Ein = 27.1 MeV and the empirical parameters n = —15.8 MeV 
and kF=lA2 F - 1 . The computations were performed using the 
Wheeler-Yamaguchi9-10 interaction and Eqs. (2.1), (2.2), (2.12a), 
(2.15), (2.23), and (2.24) in the text. The vertical dashed line 
indicates the energy-shell value E = Ein. 

39 A. S. Reiner, Phys. Rev. 133, B1105 (1964). 

FIG. 7. The solid and dashed lines represent spectral functions 
calculated using the single-particle potentials specified by Eqs. 
(2.25) in the test with F0 = 85.7 MeV, m* = 0.6m, and F0 = 57.7 
MeV, m*=m, respectively. Both spectral functions are associated 
with Ein = 79.0 MeV and the empirical parameters, n = —15.8 MeV 
and kF — lA2 F - 1 . The computations were performed using the 
Wheeler-Yamaguchi9-10 interaction and Eqs. (2.1), (2.2), (2.12a), 
(2.15), (2.23), and (2.24) in the text. The vertical dashed line 
indicates the energy-shell value E = E-m. 

"surface" of a nucleus by means of a local Fermi-
Thomas approximation creates not only a more acute 
form of the inconsistencies encountered above but also 
leads to the appearance of Cooper poles18'27 in the T 
matrices used in computing gk

(+) (E—fx). The ofT-energy-
shell propagation of the excitations arises from an in
adequate treatment of the entry of the extra nucleon 
into a dispersive medium. The occurrence of Cooper 
poles indicates the instability of the motion of the 
extra nucleon with respect to the formation of positive-
energy two-body clusters with one of the nucleons in the 
low-density "surface" of the nucleus. 

Although our analysis was motivated by the success 
of the classical model12 in describing the imaginary 
part of the optical potential, we can give no self-evident 
explanation of this success. We merely observe that in 
our more complete calculation both the entry of the 
incident nucleon into a dispersive medium and the ex
clusion principle play important roles in establishing 
the validity of an optical-model description of low-
energy excitations. Therefore the classical model's 
reliance solely on the exclusion principle for the reduc
tion of the imaginary part of the optical potential prob
ably represents an oversimplified hypothesis of the 
mechanism of this reduction even in the special case 
of the propagation of the extra nucleon through nuclear 
matter. 
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APPENDIX: SELF-CONSISTENT CALCULATION OF 
THE PROPER SELF-ENERGY IN THE 

LOW-DENSITY APPROXIMATION 

For a system of noninteracting but"dressed' ' nucleons 
we find from (2.1) and (2.9) that 

G<+> (k,E) = ft(l-»») (k))/(E™ (k) -E-iA). (Al) 

If the system has a specified density, we follow Landau2 

and write (Al) in terms of excitations which correspond 
to excited states of the "dressed" nucleons. 

G<+> (k,E) = * ( l - » « » (ft))/(e<°> ( A ) + / x - £ - tA); (A2) 

I t is well known2 that (A2) is the zero-temperature 
analog of a temperature-dependent Green's function 
such as that used by Puff.34 The excitations are properly 
described by use of the grand canonical ensemble 
because the number of excitations is not a constant of 
the motion even for a fixed number of nucleons in 
nuclear matter. 

Puff's results are a consequence of using the grand 
canonical ensemble to describe the nucleons themselves. 
To recover his results we replace E{0)(k) by E{0)(k)~id 
in the temperature-dependent analog of (Al) and use 

E™(k) = T(k). 

Puff's simple treatment of the two-body T matrix 
stems from his observation that T(k)—fx>0 for all 
values of k. This simplification occurs only when we 
abandon any self-consistent-field description of the 
"dressed" nucleons in nuclear matter. In the case 
described in Sec. C of part I I , we would obtain 
E(0)(k)~ij,<0 for all values of | k | <kF. The application 
of Puff's methods to this situation leads to a coupled-
equation problem like the one discussed in II-C except 
that a hole-hole propagation term would be added to 
the analog of (2.24). 

A well-known11 feature of the low-density approxima
tion is the reality of 2<L-D->(&,£) for E<E«»(kF). This 
result, which follows directly from (2.23) and (2.24), 
implies that 

G<"> (k,E) = -2TiU(E-E0(k))/ 

{l+ftdlX^^(k1E)ydE}E=,BQ(k) (A3) 

= -2irifin^^^(k)b{E-E^k))) 

E0(k)<E^(kF) 

in which w(L-D,)(&) and Eo(k) are defined by (2.36) 
and (2.38), respectively. For E<E™(kF), 2<L-D->0fe,£) 

has the energy dependence of a R function40 so that 

a[U( L - D - ) (^ ,£)] /aE>0; »<L-D->(Jfe)<l. (A4) 

We reemphasize11 that (A3) and (A4), which stem from 
the reality of 2 ( L-D , )(^,£) for real values of E, are a 
direct consequence of the neglect of hole propagation 
in a low-density system. The validity of (A3) for 
Eo(k) = E^(kF) is a general feature of perturbation 
theory.2,33 Most selections of V(k) (e.g., that obtained 
by using a semiphenomenological effective-mass ap
proximation with the WY interactions) lead to the 
consequence that Eo(kF)<E(0)(kF). Such a result 
implies that the influence of the exclusion principle is 
overestimated in the evaluation of (2.23) and (2.24). 
In order to mitigate this overestimation while retaining 
the simplicity inherent in the perturbation theory use of 
n^(k) rather than #<L-D->(&) in (2.23) and (2.24), we 
could adopt the following procedure for the calculation 
of EG in a system with a specified density. 

(1) Determine kF from the density via (2.16c). 
(2) Select for V(k) a form which contains adjustable 

parameters and evaluate • 

»^E«»(kF) = T(kF) + V(kF). (A5) 

(3) Select a value of k and compute 2 ( L-D , )(£,£) for 
as many values of E, E<fi, as necessary to determine 
the solution Eo(k) to Eq. (2.38). 

(4) Perform step (3) for a suitable grid of values of 
k until the function Eo(k), E$(k)<ii, has been deter
mined. I t is likely that Eo(kF) <pi and &max defined by 
iio(&max) = /x satisfies kma^>kF. 

(5) Adjust the parameters in V(k) so that Ei0)(k) 
~Eo(k) as closely as possible subject to the constraint 
th&tEW(kF) = E0(kF). 

(6) Iterate steps (3) through (5) until the parameters 
in V (k) do not change appreciably from one iteration to 
the next. 

(7) Compute Eo(kF) from (2.37) using the self-
consistent V(k). Note that 2(L-D->(^,Eo(^)) will be small 
for | k | < kF and zero for | k | = kF. 

The above procedure is evidently similar to that of 
Brueckner and Gammel.41 In order to obtain the satura
tion density and binding energy per nucleon we mini
mize Eo(kF)/N(kF) as a function of kF. The satisfaction 
of the Hugenholtz-Van Hove relation35 and the introduc
tion of coupling between Eqs. (2.15), (2.23), (2.24), 
(2.36), and (2.38) are discussed in the main text. 

40 E. P. Wigner, Ann. Math. 53, 36 (1951). The proper self-en
ergy and single-particle Green's function associated with an 
"infinite" medium are not R functions in general because they are 
not real for real values of E. 

41 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 
(1958). 


